miércoles, 26 de septiembre de 2018

T-student


Supóngase que se toma una muestra de una población normal con media  y varianza Si es el promedio de las n observaciones que contiene la muestra aleatoria, entonces la distribución  es una distribución normal estándar. Supóngase que la varianza de la población 2 es desconocida. ¿Qué sucede con la distribución de esta estadística si se reemplaza  por s? La distribución proporciona la respuesta a esta pregunta.

La media y la varianza de la distribución t son  = 0 y  para >2, respectivamente.
La siguiente figura presenta la gráfica de varias distribuciones t. La apariencia general de la distribución t es similar a la de la distribución normal estándar: ambas son simétricas y unimodales, y el valor máximo de la ordenada se alcanza en la media  = 0. Sin embargo, la distribución t tiene colas más amplias que la normal; esto es, la probabilidad de las colas es mayor que en la distribución normal. A medida que el número de grados de libertad tiende a infinito, la forma límite de la distribución t es la distribución normal estándar.

Propiedades de las distribuciones t

  1. Cada curva t tiene forma de campana con centro en 0.


  2. Cada curva t, está más dispersa que la curva normal estándar z.

  3. A medida que  aumenta, la dispersión de la curva t correspondiente disminuye.

  4. A medida que  , la secuencia de curvas t se aproxima a la curva normal estándar, por lo que la curva z recibe a veces el nombre de curva t con gl = 


La distribución de la variable aleatoria t está dada por:
Esta se conoce como la distribución t con  grados de libertad.

Sean X1, X2, . . . , Xn variables aleatorias independientes que son todas normales con media  y desviación estándar . Entonces la variable aleatoria  tiene una distribución t con  = n-1 grados de libertad.

La distribución de probabilidad de t se publicó por primera vez en 1908 en un artículo de W. S. Gosset. En esa época, Gosset era empleado de una cervecería irlandesa que desaprobaba la publicación de investigaciones de sus empleados. Para evadir esta prohibición, publicó su trabajo en secreto bajo el nombre de "Student". En consecuencia, la distribución t normalmente se llama distribución t de Student, o simplemente distribución t. Para derivar la ecuación de esta distribución, Gosset supone que las muestras se seleccionan de una población normal. Aunque esto parecería una suposición muy restrictiva, se puede mostrar que las poblaciones no normales que poseen distribuciones en forma casi de campana aún proporcionan valores de t que se aproximan muy de cerca a la distribución t.

La distribución t difiere de la de Z en que la varianza de t depende del tamaño de la muestra y siempre es mayor a uno. Unicamente cuando el tamaño de la muestra tiende a infinito las dos distribuciones serán las mismas.

Se acostumbra representar con el valor t por arriba del cual se encuentra un área igual a . Como la distribución t es simétrica alrededor de una media de cero, tenemos; es decir, el valor t que deja un área de  a la derecha y por tanto un área de  a la izquierda, es igual al valor t negativo que deja un área de  en la cola derecha de la distribución. Esto es, t0.95 = -t0.05, t0.99=-t0.01, etc.

Para encontrar los valores de t se utilizará la tabla de valores críticos de la distribución t del libro Probabilidad y Estadística para Ingenieros de los autores Walpole, Myers y Myers.

Ejemplo:
El valor t con  = 14 grados de libertad que deja un área de 0.025 a la izquierda, y por tanto un área de 0.975 a la derecha, es
t0.975=-t0.025 = -2.145
Si se observa la tabla, el área sombreada de la curva es de la cola derecha, es por esto que se tiene que hacer la resta de . La manera de encontrar el valor de t es buscar el valor de  en el primer renglón de la tabla y luego buscar los grados de libertad en la primer columna y donde se intercepten   se obtendrá el valor de t.

Ejemplo:
Encuentre la probabilidad de –t0.025 < t < t0.05.
Solución:
Como t0.05 deja un área de 0.05 a la derecha, y –t0.025 deja un área de 0.025 a la izquierda, encontramos un área total de 1-0.05-0.025 = 0.925.
P( –t0.025 < t < t0.05) = 0.925
Ejemplo:
Encuentre k tal que P(k < t < -1.761) = 0.045, para una muestra aleatoria de tamaño 15 que se selecciona de una distribución normal.
Solución:
Si se busca en la tabla el valor de t =1.761 con 14 grados de libertad nos damos cuenta que a este valor le corresponde un área de 0.05 a la izquierda, por ser negativo el valor. Entonces si se resta 0.05 y 0.045 se tiene un valor de 0.005, que equivale a Luego se busca el valor de 0.005 en el primer renglón con 14 grados de libertad y se obtiene un valor de t = 2.977, pero como el valor de  está en el extremo izquierdo de la curva entonces la respuesta es t = -2.977 por lo tanto:
P(-2.977 < t < -1.761) = 0.045
Ejemplo:
Un ingeniero químico afirma que el rendimiento medio de la población de cierto proceso en lotes es 500 gramos por milímetro de materia prima. Para verificar esta afirmación toma una muestra de 25 lotes cada mes. Si el valor de t calculado cae entre –t0.05 y t0.05, queda satisfecho con su afirmación. ¿Qué conclusión extraería de una muestra que tiene una media de 518 gramos por milímetro y una desviación estándar de 40 gramos? Suponga que la distribución de rendimientos es aproximadamente normal.

Solución:
De la tabla encontramos que t0.05 para 24 grados de libertad es de 1.711. Por tanto, el fabricante queda satisfecho con esta afirmación si una muestra de 25 lotes rinde un valor t entre –1.711 y 1.711.
Se procede a calcular el valor de t:


Este es un valor muy por arriba de 1.711. Si se desea obtener la probabilidad de obtener un valor de t con 24 grados de libertad igual o mayor a 2.25 se busca en la tabla y es aproximadamente de 0.02. De aquí que es probable que el fabricante concluya que el proceso produce un mejor producto del que piensa.


No hay comentarios.:

Publicar un comentario