miércoles, 26 de septiembre de 2018

T-student


Supóngase que se toma una muestra de una población normal con media  y varianza Si es el promedio de las n observaciones que contiene la muestra aleatoria, entonces la distribución  es una distribución normal estándar. Supóngase que la varianza de la población 2 es desconocida. ¿Qué sucede con la distribución de esta estadística si se reemplaza  por s? La distribución proporciona la respuesta a esta pregunta.

La media y la varianza de la distribución t son  = 0 y  para >2, respectivamente.
La siguiente figura presenta la gráfica de varias distribuciones t. La apariencia general de la distribución t es similar a la de la distribución normal estándar: ambas son simétricas y unimodales, y el valor máximo de la ordenada se alcanza en la media  = 0. Sin embargo, la distribución t tiene colas más amplias que la normal; esto es, la probabilidad de las colas es mayor que en la distribución normal. A medida que el número de grados de libertad tiende a infinito, la forma límite de la distribución t es la distribución normal estándar.

Propiedades de las distribuciones t

  1. Cada curva t tiene forma de campana con centro en 0.


  2. Cada curva t, está más dispersa que la curva normal estándar z.

  3. A medida que  aumenta, la dispersión de la curva t correspondiente disminuye.

  4. A medida que  , la secuencia de curvas t se aproxima a la curva normal estándar, por lo que la curva z recibe a veces el nombre de curva t con gl = 


La distribución de la variable aleatoria t está dada por:
Esta se conoce como la distribución t con  grados de libertad.

Sean X1, X2, . . . , Xn variables aleatorias independientes que son todas normales con media  y desviación estándar . Entonces la variable aleatoria  tiene una distribución t con  = n-1 grados de libertad.

La distribución de probabilidad de t se publicó por primera vez en 1908 en un artículo de W. S. Gosset. En esa época, Gosset era empleado de una cervecería irlandesa que desaprobaba la publicación de investigaciones de sus empleados. Para evadir esta prohibición, publicó su trabajo en secreto bajo el nombre de "Student". En consecuencia, la distribución t normalmente se llama distribución t de Student, o simplemente distribución t. Para derivar la ecuación de esta distribución, Gosset supone que las muestras se seleccionan de una población normal. Aunque esto parecería una suposición muy restrictiva, se puede mostrar que las poblaciones no normales que poseen distribuciones en forma casi de campana aún proporcionan valores de t que se aproximan muy de cerca a la distribución t.

La distribución t difiere de la de Z en que la varianza de t depende del tamaño de la muestra y siempre es mayor a uno. Unicamente cuando el tamaño de la muestra tiende a infinito las dos distribuciones serán las mismas.

Se acostumbra representar con el valor t por arriba del cual se encuentra un área igual a . Como la distribución t es simétrica alrededor de una media de cero, tenemos; es decir, el valor t que deja un área de  a la derecha y por tanto un área de  a la izquierda, es igual al valor t negativo que deja un área de  en la cola derecha de la distribución. Esto es, t0.95 = -t0.05, t0.99=-t0.01, etc.

Para encontrar los valores de t se utilizará la tabla de valores críticos de la distribución t del libro Probabilidad y Estadística para Ingenieros de los autores Walpole, Myers y Myers.

Ejemplo:
El valor t con  = 14 grados de libertad que deja un área de 0.025 a la izquierda, y por tanto un área de 0.975 a la derecha, es
t0.975=-t0.025 = -2.145
Si se observa la tabla, el área sombreada de la curva es de la cola derecha, es por esto que se tiene que hacer la resta de . La manera de encontrar el valor de t es buscar el valor de  en el primer renglón de la tabla y luego buscar los grados de libertad en la primer columna y donde se intercepten   se obtendrá el valor de t.

Ejemplo:
Encuentre la probabilidad de –t0.025 < t < t0.05.
Solución:
Como t0.05 deja un área de 0.05 a la derecha, y –t0.025 deja un área de 0.025 a la izquierda, encontramos un área total de 1-0.05-0.025 = 0.925.
P( –t0.025 < t < t0.05) = 0.925
Ejemplo:
Encuentre k tal que P(k < t < -1.761) = 0.045, para una muestra aleatoria de tamaño 15 que se selecciona de una distribución normal.
Solución:
Si se busca en la tabla el valor de t =1.761 con 14 grados de libertad nos damos cuenta que a este valor le corresponde un área de 0.05 a la izquierda, por ser negativo el valor. Entonces si se resta 0.05 y 0.045 se tiene un valor de 0.005, que equivale a Luego se busca el valor de 0.005 en el primer renglón con 14 grados de libertad y se obtiene un valor de t = 2.977, pero como el valor de  está en el extremo izquierdo de la curva entonces la respuesta es t = -2.977 por lo tanto:
P(-2.977 < t < -1.761) = 0.045
Ejemplo:
Un ingeniero químico afirma que el rendimiento medio de la población de cierto proceso en lotes es 500 gramos por milímetro de materia prima. Para verificar esta afirmación toma una muestra de 25 lotes cada mes. Si el valor de t calculado cae entre –t0.05 y t0.05, queda satisfecho con su afirmación. ¿Qué conclusión extraería de una muestra que tiene una media de 518 gramos por milímetro y una desviación estándar de 40 gramos? Suponga que la distribución de rendimientos es aproximadamente normal.

Solución:
De la tabla encontramos que t0.05 para 24 grados de libertad es de 1.711. Por tanto, el fabricante queda satisfecho con esta afirmación si una muestra de 25 lotes rinde un valor t entre –1.711 y 1.711.
Se procede a calcular el valor de t:


Este es un valor muy por arriba de 1.711. Si se desea obtener la probabilidad de obtener un valor de t con 24 grados de libertad igual o mayor a 2.25 se busca en la tabla y es aproximadamente de 0.02. De aquí que es probable que el fabricante concluya que el proceso produce un mejor producto del que piensa.


miércoles, 19 de septiembre de 2018

distribución maestral de la diferencia de proporciones

Muchas aplicaciones involucran poblaciones de datos cualitativos que deben compararse utilizando proporciones o porcentajes. A continuación se citan algunos ejemplos:

  • Educación.- ¿Es mayor la proporción de los estudiantes que aprueban matemáticas que las de los que aprueban inglés?


  • Medicina.- ¿Es menor el porcentaje de los usuarios del medicamento A que presentan una reacción adversa que el de los usuarios del fármaco B que también presentan una reacción de ese tipo?


  • Administración.- ¿Hay diferencia entre los porcentajes de hombres y mujeres en posiciones gerenciales.


  • Ingeniería.- ¿Existe diferencia entre la proporción de artículos defectuosos que genera la máquina A a los que genera la máquina B?

Cuando el muestreo procede de dos poblaciones binomiales y se trabaja con dos proporciones muestrales, la distribución muestral de diferencia de proporciones es aproximadamente normal para tamaños de muestra grande (n1p15, n1q15,n2p25 y n2q25). Entonces p1 y p2 tienen distribuciones muestrales aproximadamente normales, así que su diferencia p1-p2 también tiene una distribución muestral aproximadamente normal.
Cuando se estudió a la distribución muestral de proporciones se comprobó que y que , por lo que no es difícil deducir que  y que .
La fórmula que se utilizará para el calculo de probabilidad del estadístico de diferencia de proporciones es:

Ejemplo:
Los hombres y mujeres adultos radicados en una ciudad grande del norte difieren en sus opiniones sobre la promulgación de la pena de muerte para personas culpables de asesinato. Se cree que el 12% de los hombres adultos están a favor de la pena de muerte, mientras que sólo 10% de las mujeres adultas lo están. Si se pregunta a dos muestras aleatorias de 100 hombres y 100 mujeres su opinión sobre la promulgación de la pena de muerte, determine la probabilidad de que el porcentaje de hombres a favor sea al menos 3% mayor que el de las mujeres.

Solución:
Datos:
PH = 0.12
PM = 0.10
nH = 100
nM = 100
p(pH-pM 0.03) = ?


Se recuerda que se está incluyendo el factor de corrección de 0.5 por ser una distribución binomial y se está utilizando la distribución normal.



Se concluye que la probabilidad de que el porcentaje de hombres a favor de la pena de muerte, al menos 3% mayor que el de mujeres es de 0.4562.

Ejemplo:
Una encuesta del Boston College constó de 320 trabajadores de Michigan que fueron despedidos entre 1979 y 1984, encontró que 20% habían estado sin trabajo durante por lo menos dos años. Supóngase que tuviera que seleccionar otra muestra aleatoria de 320 trabajadores de entre todos los empleados despedidos entre 1979 y 1984. ¿Cuál sería la probabilidad de que su porcentaje muestral de trabajadores sin empleo durante por lo menos dos años, difiera del porcentaje obtenido en la encuesta de Boston College, en 5% o más?

Solución:
En este ejercicio se cuenta únicamente con una población, de la cual se están extrayendo dos muestras y se quiere saber la probabilidad de la diferencia de los porcentajes en esas dos muestras, por lo que se debe de utilizar la distribución muestral de proporciones con P1= P2, ya que es una misma población.
Otra de las situaciones con la cual nos topamos es que desconocemos la proporción de trabajadores despedidos entre 1979 y 1984 que estuvieron desempleados por un período de por lo menos dos años, sólo se conoce la 
p1= 0.20 ya que al tomar una muestra de 320 trabajadores se observó esa proporción.

En la fórmula de la distribución muestral de proporciones para el cálculo de probabilidad se necesita saber las proporciones de las poblaciones, las cuales en este ejercicio las desconocemos, por lo que se utilizará el valor de 0.20 como una estimación puntual de P. En el siguiente tema se abordará el tema de estimación estadística y se comprenderá el porque estamos utilizando de esa manera el dato.

También debe de comprenderse la pregunta que nos hace este problema, ¿cuál sería la probabilidad de que su porcentaje muestral de trabajadores sin empleo durante por lo menos dos años, difiera del porcentaje obtenido en la encuesta de Boston College, en 5% o más?, la palabra difiera quiere decir que puede existir una diferencia a favor de la muestra uno, o a favor de la muestra dos, por lo que se tendrán que calcular dos áreas en la distribución y al final sumarlas.

Datos:
p1 = 0.20
n1 = 320 trabajadores
n2 = 320 trabajadores
P1 = P2






La probabilidad de que su proporcion muestral de trabajadores sin empleo durante por lo menos dos años, difiera del porcentaje obtenido en la encuesta de Boston College, en 0.05 o más es de 0.1260.


Ejemplo:
Se sabe que 3 de cada 6 productos fabricados por la máquina 1 son defectuosos y que 2 de cada 5 objetos fabricados por la máquina 2 son defectuosos; se toman muestras de 120 objetos de cada máquina:

  1. ¿cuál es la probabilidad de que la proporción de artículos defectuosos de la máquina 2 rebase a la máquina 1 en por lo menos 0.10?


  2. ¿cuál es la probabilidad de que la proporción de artículos defectuosos de la máquina 1 rebase a la máquina 2 en por lo menos 0.15?

Solución:
Datos:
P1 = 3/6 = 0.5
P2 = 2/5 = 0.4
n1 = 120 objetos
n2 = 120 objetos

  1. p(p2-p10.10) = ?




  2. Otra manera de hacer este ejercicio es poner P1-P2:



    La probabilidad de que exista una diferencia de proporciones de artículos defectuosos de por lo menos 10% a favor de la máquina 2 es de 0.0011.


  3. p(p1-p2
0.15)=?



La probabilidad de que exista una diferencia de proporciones de artículos defectuosos de por lo menos 15% a favor de la máquina 1 es de 0.2357.


En el control de calidad y específicamente en los gráficos de control "c" se aplica esta distribución, la cual consiste en que al extraer un artículo contabilicemos el número de defectos que tiene ese artículo.
Esta distribución muestral proviene de la distribución de Poisson, en la cual le media es  y que en este caso es el número promedio de defectos por unidad. Como ya es conocido la varianza de la distribución de Poisson es igual a  por lo que se puede deducir la formula de la siguiente manera:
Para la distribución muestral de número de defectos la nomenclatura utilizada es:
c = número defectos por unidad de inspección
C = número de defectos promedio por unidad de inspección

Se debe de recordar que la distribución de Poisson es una distribución discreta, y se esta utilizando la aproximación de la normal a la Poisson, debiendo aplicar el factor de corrección de ± 0.5 según sea el caso. La formula para la dsitribución muestral de número de defectos quedaría de la siguiente manera:
Ejemplo:
En cierta empresa se fabrican productos con un promedio de 8 defectos por unidad. Determine la probabilidad de que el próximo producto inspeccionado tenga un número de defectos:

  1. Mayor o igual a 6


  2. Exactamente 7


  3. Como máximo 9





La probabilidad de que el siguiente producto inspeccionado tenga por lo menos 6 defectos es de 0.8106.








  1. La probabilidad de que el siguiente producto inspeccionado tenga exactamente 7 defectos es de 0.1344.




La probabilidad de que el siguiente producto inspeccionado tenga a lo más 9 defectos es de 0.7019.


  1. Se sabe que la resistencia a la ruptura de cierto tipo de cuerda se distribuye normalmente con media de 2000 libras y una varianza de 25,000 lbs2. Si se selecciona una muestra aleatoria de 100 cuerdas; determine la probabilidad de que en esa muestra:

  1. La resistencia media encontrada sea de por lo menos 1958 libras.


  2. La resistencia media se mayor de 2080 libras.


  1. Como parte de un proyecto general de mejoramiento de la calidad, un fabricante textil decide controlar el número de imperfecciones encontradas en cada pieza de tela. Se estima que el número promedio de imperfecciones por cada pieza de tela es de 12, determine la probabilidad de que en la próxima pieza de tela fabricada se encuentren:

  1. Entre 10 y 12 imperfecciones.


  2. Menos de 9 y más de 15 imperfecciones.


  1. En una prueba de aptitud la puntuación media de los estudiantes es de 72 puntos y la desviación estándar es de 8 puntos. ¿Cuál es la probabilidad de que dos grupos de estudiantes, formados de 28 y 36 estudiantes, respectivamente, difieran en su puntuación media en:

  1. 3 ó más puntos.


  2. 6 o más puntos.


  3. Entre 2 y 5 puntos.


  1. Un especialista en genética ha detectado que el 26% de los hombres y el 24% de las mujeres de cierta región del país tiene un leve desorden sanguíneo; si se toman muestras de 150 hombres y 150 mujeres, determine la probabilidad de que la diferencia muestral de proporciones que tienen ese leve desorden sanguíneo sea de:

  1. Menos de 0.035 a favor de los hombres.


  2. Entre 0.01 y 0.04 a favor de los hombres.


  1. Una urna contiene 80 bolas de las que 60% son rojas y 40% blancas. De un total de 50 muestras de 20 bolas cada una, sacadas de la urna con remplazamiento, ¿en cuántas cabe esperar

  1. Igual número de bolas rojas y blancas?


  2. 12 bolas rojas y 8 blancas?


  3. 8 bolas rojas y 12 blancas?


  4. 10 ó mas bolas blancas?


  1. Los pesos de 1500 cojinetes de bolas se distribuyen normalmente con media de 2.40 onzas y desviación estándar de 0.048 onzas. Si se extraen 300 muestras de tamaño 36 de esta población, determinar la media esperada y la desviación estándar de la distribución muestral de medias si el muestreo se hace:

  1. Con remplazamiento


  2. Sin remplazamiento


  1. La vida media de una máquina para hacer pasta es de siete años, con una desviación estándar de un año. Suponga que las vidas de estas máquinas siguen aproximadamente una distribución normal, encuentre:

  1. La probabilidad de que la vida media de una muestra aleatoria de 9 de estas máquinas caiga entre 6.4 y 7.2 años.


  2. El valor de la 
a la derecha del cual caería el 15% de las medias calculadas de muestras aleatorias de tamaño nueve.



  1. Se llevan a cabo dos experimentos independientes en lo que se comparan dos tipos diferentes de pintura. Se pintan 18 especímenes con el tipo A y en cada uno se registra el tiempo de secado en horas. Lo mismo se hace con el tipo B. Se sabe que las desviaciones estándar de la población son ambas 1.0. Suponga que el tiempo medio de secado es igual para los dos tipo de pintura. Encuentre la probabilidad de que la diferencia de medias en el tiempo de secado sea mayor a uno a favor de la pintura A.





Respuestas a los problemas propuestos:
1. a) 0.9960 b) 0
2. a) 0.3221 b) 0.3122
3. a) 0.2150 b) 0.0064 c) 0.4504
4. a) 0.2227 b) 0.2848
5. a) 6 b) 9 c) 2 d) 12
6. a) b) ligeramente menor que 0.008
7. a) 0.6898 b) 7.35

8. 0.0013